Author:
Georgantzinos Stelios K.,Giannopoulos G. I.,Pierou P. K.,Anifantis N. K.
Abstract
Purpose
– A computational structural mechanics approach, based on the exclusive use of standard bar elements is utilized in order to investigate the elastic stability of single-walled carbon nanotubes (SWCNTs) with atom vacancy defects under axial compressive loads. The paper aims to discuss this issue.
Design/methodology/approach
– The proposed model uses three dimensional, two nodded, linear truss finite elements of three degrees of freedom per node to represent the force field appearing between carbon atoms due to the basic interatomic interactions.
Findings
– Numerical results concerning the critical forces which cause instability of pristine nanotubes are compared with corresponding data given in the open literature in the effort to demonstrate the good accuracy of the method. Then, it is assumed that SWCNTs present-specific structural defects defined by their length, width, orientation and longitudinal position. The influence of these four geometric parameters of the imperfections considered on the stability of SWCNTs is investigated in detail and essential conclusions are revealed.
Originality/value
– To the authors’ best knowledge, is the first time that the specific method is introduced for the prediction of buckling behavior of defective SWCNTs. The structural defect here is considered as atoms vacancy that forms a like-crack defect having a specific length, width, orientation and position along the nanotube length.
Subject
Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献