Numerical stability analysis of imperfect single-walled carbon nanotubes under axial compressive loads

Author:

Georgantzinos Stelios K.,Giannopoulos G. I.,Pierou P. K.,Anifantis N. K.

Abstract

Purpose – A computational structural mechanics approach, based on the exclusive use of standard bar elements is utilized in order to investigate the elastic stability of single-walled carbon nanotubes (SWCNTs) with atom vacancy defects under axial compressive loads. The paper aims to discuss this issue. Design/methodology/approach – The proposed model uses three dimensional, two nodded, linear truss finite elements of three degrees of freedom per node to represent the force field appearing between carbon atoms due to the basic interatomic interactions. Findings – Numerical results concerning the critical forces which cause instability of pristine nanotubes are compared with corresponding data given in the open literature in the effort to demonstrate the good accuracy of the method. Then, it is assumed that SWCNTs present-specific structural defects defined by their length, width, orientation and longitudinal position. The influence of these four geometric parameters of the imperfections considered on the stability of SWCNTs is investigated in detail and essential conclusions are revealed. Originality/value – To the authors’ best knowledge, is the first time that the specific method is introduced for the prediction of buckling behavior of defective SWCNTs. The structural defect here is considered as atoms vacancy that forms a like-crack defect having a specific length, width, orientation and position along the nanotube length.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A modified spring finite element model for graphene elastic properties study;Materials Today Communications;2023-03

2. On the molecular mechanics of single layer graphene sheets;International Journal of Engineering Science;2018-12

3. Thermoelastic flexural analysis of FG-CNT doubly curved shell panel;Aircraft Engineering and Aerospace Technology;2018-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3