Cyber resilience in supply chain system security using machine learning for threat predictions

Author:

Yeboah-Ofori AbelORCID,Swart CameronORCID,Opoku-Boateng Francisca AfuaORCID,Islam Shareeful

Abstract

PurposeCyber resilience in cyber supply chain (CSC) systems security has become inevitable as attacks, risks and vulnerabilities increase in real-time critical infrastructure systems with little time for system failures. Cyber resilience approaches ensure the ability of a supply chain system to prepare, absorb, recover and adapt to adverse effects in the complex CPS environment. However, threats within the CSC context can pose a severe disruption to the overall business continuity. The paper aims to use machine learning (ML) techniques to predict threats on cyber supply chain systems, improve cyber resilience that focuses on critical assets and reduce the attack surface.Design/methodology/approachThe approach follows two main cyber resilience design principles that focus on common critical assets and reduce the attack surface for this purpose. ML techniques are applied to various classification algorithms to learn a dataset for performance accuracies and threats predictions based on the CSC resilience design principles. The critical assets include Cyber Digital, Cyber Physical and physical elements. We consider Logistic Regression, Decision Tree, Naïve Bayes and Random Forest classification algorithms in a Majority Voting to predicate the results. Finally, we mapped the threats with known attacks for inferences to improve resilience on the critical assets.FindingsThe paper contributes to CSC system resilience based on the understanding and prediction of the threats. The result shows a 70% performance accuracy for the threat prediction with cyber resilience design principles that focus on critical assets and controls and reduce the threat.Research limitations/implicationsTherefore, there is a need to understand and predicate the threat so that appropriate control actions can ensure system resilience. However, due to the invincibility and dynamic nature of cyber attacks, there are limited controls and attributions. This poses serious implications for cyber supply chain systems and its cascading impacts.Practical implicationsML techniques are used on a dataset to analyse and predict the threats based on the CSC resilience design principles.Social implicationsThere are no social implications rather it has serious implications for organizations and third-party vendors.Originality/valueThe originality of the paper lies in the fact that cyber resilience design principles that focus on common critical assets are used including Cyber Digital, Cyber Physical and physical elements to determine the attack surface. ML techniques are applied to various classification algorithms to learn a dataset for performance accuracies and threats predictions based on the CSC resilience design principles to reduce the attack surface for this purpose.

Publisher

Emerald

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3