Modeling and algorithm for resource-constrained multi-project scheduling problem based on detection and rework

Author:

Zhu Hongwei,Lu Zhiqiang,Lu Chenyao,Ren Yifei

Abstract

Purpose To meet the requirement of establishing an effective schedule for the assembly process with overall detection and rework, this paper aims to address a new problem named resource-constrained multi-project scheduling problem based on detection and rework (RCMPSP-DR). Design/methodology/approach First, to satisfy both online and offline scheduling, a mixed integer programming model is established with a weighted bi-objective minimizing the expected makespan and the solution robustness. Second, an algorithm that combines a tabu search framework with a critical chain-based baseline generation scheme is designed. The tabu search framework focuses on searching for a reasonable resource flow representing the execution sequence of activities, while the critical chain-based baseline generation scheme establishes a buffered baseline schedule by estimating the tradeoff between two aspects of bi-objective. Findings The proposed algorithm can get solutions with gaps from −4.45% to 2.33% when compared with those obtained by the commercial MIP solver CPLEX. Moreover, the algorithm outperforms four other algorithms in terms of both objective performance and stability over instances with different weighting parameters, which reveals its effectiveness. Originality/value The represented RCMPSP-DR considering the overall detection and rework is an extension of the scheduling problem for large-scale equipment. An effective algorithm is proposed to establish the baseline schedule and determine the execution sequence of activities for the assembly process, which is significant for practical engineering applications.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3