Abstract
Purpose
This paper aims to present a design methodology to enable product design for ease of assembly. It is corroborated by means of a case study. The methodology is based on standard time data. This enables quick computation of assembly time as well as comparing different design options for ease of assembly.
Design/methodology/approach
Component design that is easy to assemble is likely to take less time and vice versa. Assembly time is a function of product design attributes such as geometric shape, weight, center of gravity, type of material, number of fasteners and types of fasteners. The methodology uses standard data to achieve its objective. Numeric scores are developed for each design feature based on the aforementioned design attributes. This enables not only computation of assembly time for a brand new product but also comparison of two or more alternative design configurations from the point of view of ease of assembly.
Findings
The value of the system is corroborated by means of case studies of actual product designs. It is demonstrated that changing any of the underlying design attributes (such as type of fastener used, number of fasteners used, material of the component and component shape) is likely to result in changing the amount of time taken to assemble the product. The scoring system facilitates the quick computation of assembly time
Originality/value
The amount of time to assemble a product before the product is ever designed is facilitated by this system. Assembly time is a direct function of product design attributes. Process time is calculated using standard data, specifically, the Methods Time Measurement (MTM) system. This is accomplished by converting design features into time measurement units (TMUs). Assembly cost can then be easily computed by using assembly time as the basis. The computation of assembly time and cost is important inasmuch as its role in influencing productivity. This is of obvious value not only to the designer but the company as a whole.
Subject
Industrial and Manufacturing Engineering,Control and Systems Engineering
Reference82 articles.
1. Conceptual framework of lean ergonomics for assembly process: pDCA approach;Journal of Engineering and Science Research,2018
2. CAD system with product assembly/disassembly planning function;Robotics and Computer-Integrated Manufacturing,1993
3. Linking product design to flexibility in an assembly system: a case study;Journal of Manufacturing Technology Management,2017
4. An integrated method for designing modular products;Journal of Manufacturing Technology Management,2004
5. Derivative products supporting product development and design for assembly;Procedia Manufacturing.,2018
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献