A hybrid approach for cost-optimized lateral transshipment in a supply chain environment

Author:

Nakandala Dilupa,Lau Henry,Ning Andrew

Abstract

Purpose – When making sourcing decisions, both cost optimization and customer demand fulfillment are equally important for firm competitiveness. The purpose of this paper is to develop a stochastic search technique, hybrid genetic algorithm (HGA), for cost-optimized decision making in wholesaler inventory management in a supply chain network of wholesalers, retailers and suppliers. Design/methodology/approach – This study develops a HGA by using a mixture of greedy-based and randomly generated solutions in the initial population and a local search method (hill climbing) applied to individuals selected for performing crossover before crossover is implemented and to the best individual in the population at the end of HGA as well as gene slice and integration. Findings – The application of the proposed HGA is illustrated by considering multiple scenarios and comparing with the other commonly adopted methods of standard genetic algorithm, simulated annealing and tabu search. The simulation results demonstrate the capability of the proposed approach in producing more effective solutions. Practical implications – The pragmatic importance of this method is for the inventory management of wholesaler operations and this can be scalable to address real contexts with multiple wholesalers and multiple suppliers with variable lead times. Originality/value – The proposed stochastic-based search techniques have the capability in producing good-quality optimal or suboptimal solutions for large-scale problems within a reasonable time using ordinary computing resources available in firms.

Publisher

Emerald

Subject

Business, Management and Accounting (miscellaneous),Business and International Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3