Abstract
PurposeMulti-robot coalition formation (MRCF) refers to the formation of robot coalitions against complex tasks requiring multiple robots for execution. Situations, where the robots have to participate in multiple coalitions over time due to a large number of tasks, are called Time-extended MRCF. While being NP-hard, time-extended MRCF also holds the possibility of resource deadlocks due to any cyclic hold-and-wait conditions among the coalitions. Existing schemes compromise on solution quality to form workable, deadlock-free coalitions through instantaneous or incremental allocations.Design/methodology/approachThis paper presents an evolutionary algorithm (EA)-based task allocation framework for improved, deadlock-free solutions against time-extended MRCF. The framework simultaneously allocates multiple tasks, allowing the robots to participate in multiple coalitions within their schedule. A directed acyclic graph–based representation of robot plans is used for deadlock detection and avoidance.FindingsAllowing the robots to participate in multiple coalitions within their schedule, significantly improves the allocation quality. The improved allocation quality of the EA is validated against two auction schemes inspired by the literature.Originality/valueTo the best of the author's knowledge, this is the first framework which simultaneously considers multiple MR tasks for deadlock-free allocation while allowing the robots to participate in multiple coalitions within their plans.
Reference30 articles.
1. A generic evolutionary algorithm for efficient MR task allocations,2019
2. An evolutionary traveling salesman approach for MR task allocation,2017
3. A flexible evolutionary algorithm for task allocation in MR team,2018
4. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art;Computer Methods in Applied Mechanics and Engineering,2002
5. Plan distance heuristics for task fusion in distributed temporal continuous planning,2020
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献