Simulation of skin effect via separated representations

Author:

Pineda‐Sanchez M.,Chinesta F.,Roger‐Folch J.,Riera‐Guasp M.,Pérez‐Cruz J.,Daïm F.

Abstract

PurposeThe purpose of this paper is to apply the method of separation of variables to obtain the current distribution in the slot of an electrical machine, taking into account the skin effect.Design/methodology/approachA slot in an electrical machine, filled with a solid conductor, and fed with an externally imposed density current, presents a current distribution that depends on the skin effect. The magnetic potential vector is formulated and solved using a separate representation as a finite sum of unidimensional (space and time) functions, taking into account the boundary conditions. The proposed method obtains the transient and permanent distribution of the current in the interior of the slot, both in transient and steady regime, and the results at the end of the transient are compared with the analytic ones in permanent regime.FindingsThe magnetic potential vector in the interior of a slot filled with a solid conductor can be expressed as a finite sum of just 16 modes, which capture the evolution of the field during the transient and permanent regime. These modes are expressed as the product of space and time functions, which have been obtained automatically by the separation of variables algorithm. Instead of solving multiple field problems, one for each time instant, the proposed method just solves two single‐variable differential equations, one in the time domain and other in the spatial one.Research limitations/implicationsThe application of the proposed method to non‐sinusoidal currents, such as those generated by variable speed‐drives, would allow to compute the field taking into account both the very small time scale of the pulse width modulation pulses, in the range of kiloHz, and the wide time scale of the currents envelope, in the range of 0‐100 Hz. Extension to 2D and 3D spatial configurations is also under consideration.Originality/valueUsing the method of separation of variables to solve electromagnetic problems provides a new method which can simplify and speed up the computation of transient fields in multidimensional time and space domains.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3