Determining degrees of freedom for eccentricity fault in SRM based on nonlinear static torque function

Author:

Torkaman Hossein,Afjei Ebrahim

Abstract

PurposeThe purpose of this paper is to determine the degrees of freedom (DOF) for eccentricity fault in switched reluctance motor (SRM) based on nonlinear static torque function to minimize torque ripple for maximum performance in motoring operation.Design/methodology/approachAn algorithm based on nonlinear torque function versus rotor position and percent of rotor eccentricity for the SRM operation is introduced. This algorithm enables accurate determination of different modes of motor operations namely, healthy and faulty conditions. In this approach, SRM is first analyzed by a 3D finite element method for estimation of nonlinear torque function and then the function is approximated by least square, cubic spline and piecewise cubic Hermitian methods. The minimization is performed by random search method and genetic algorithm.FindingsA new procedure for computing the DOF of eccentricity in SRM based on nonlinear torque function is proposed and analyzed. It computes the legal intervals for the radial airgap length as well as the regions of the motor operation under different conditions. The functionability and the feasibility of this algorithm is illustrated by employing it on a three‐phase 6/4 SRM.Practical implicationsThe proposed method and its results can improve the motor control while the implementation is simple and practical. The proposed method can be used for other motors as well.Originality/valueThe boundary of motor operation under fault must be calculated to attain smooth control on motor to achieve high performance expected from the machine. To the best knowledge of the authors, this is the first time such a study has been conducted on SRM.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3