Alternative numerical modeling of a superconducting charge qubit as an eigenvalue problem

Author:

Canturk Mehmet,Kurt Erol,Askerzade Iman N.

Abstract

PurposeThe purpose of this paper is to employ an alternative numerical approach to analyze the characteristics of superconducting charge qubit based on a single Cooper pair box (SCB), also to study the influence of the bias current.Design/methodology/approachThe paper starts with the circuit model of a charge qubit system based on Josephson junction using Hamiltonian formalism. Corresponding Schrodinger eigenvalue problem with periodic boundary condition is converted to the Mathieu type eigenvalue problem. By applying finite difference technique, energy spectrum of charge qubit is obtained and the solutions in the lowest band are obtained in the form of Bloch waves whose superposition provides a wave packet to investigate the effect of bias current to the Coulomb blockade.FindingsThe paper identifies a periodic tridiagonal Hermitian matrix form of the eigenvalue problem that is believed to be a special eigenvalue problem. The paper emphasizes that Schrodinger formalism is very useful to model superconducting qubits systems. The investigations indicate that the bias current strongly influences the Coulomb blockade and expectation value of supercurrent (as well as number of Cooper pairs) are affected by gate voltage and energy scale.Research limitations/implicationsIn the present study, Schrodinger eigenvalue problem is time independent, therefore, current‐voltage characteristics of the charge qubit system could not be considered. The solution technique applied here can also be used to apply other type of Josephson junction based qubits and circuits.Practical implicationsThe paper includes theoretical findings for the development of superconducting qubit that can be valuable for experimentalist. The result obtained in this study is useful for the comparison of experimental study with the expectation value of number of Cooper pairs as function of gate voltage. Working parameters of a SCB can be determined from the findings.Originality/valueThis paper fulfils the contribution of the numerical study of Schrodinger equation for the investigation of superconducting qubits under the influence of bias current.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference31 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3