Unfolding the drivers for sentiments generated by Airbnb Experiences

Author:

Moro Sérgio,Rita Paulo,Esmerado Joaquim,Oliveira Cristina

Abstract

Purpose Airbnb Experiences is a new type of service launched by Airbnb in November 2016, where users can offer travellers a wide range of activities. This study devotes attention to analysing customer feedback expressed in online reviews published in Airbnb to evaluate those experiences. Design/methodology/approach A total of 1,110 reviews were collected from 12 categories, including 111 experiences, resulting in 10 reviews per experience. First, the sentiment score was computed based on the text of the reviews. Second, 17 quantitative features encompassing user, Airbnb experience and review information were used to model the score through a support vector machine. Third, a sensitivity analysis was performed to extract knowledge on the most relevant features influencing the sentiment score. Findings Tourists writing online reviews are not only influenced by their tourist experience but also by their own online experience with the booking and online review platform. The number of reviews made by the user accounted for more than 20 per cent of relevance, while users with more reviews tended to grant more positive reviews. Originality/value Current literature is enhanced with a conceptual model grounded on existing studies that assess tourist satisfaction with tour services. Both services online visibility and user characteristics have shown significant importance to tourist satisfaction, adding to the existing body of knowledge.

Publisher

Emerald

Subject

Tourism, Leisure and Hospitality Management,Geography, Planning and Development

Reference29 articles.

1. Shopping centers beyond purchasing of luxury goods: a tourism perspective;Annals of Leisure Research,2018

2. Sentiment classification of consumer-generated online reviews using topic modeling;Journal of Hospitality Marketing & Management,2017

3. The impact of tour service performance on tourist satisfaction and behavioral intentions: a study of Chinese tourists in Hong Kong;Journal of Travel & Tourism Marketing,2015

4. Examining the mediating role of experience quality in a model of tourist experiences;Journal of Travel & Tourism Marketing,2004

5. Data mining with neural networks and support vector machines using the R/rminer tool,2010

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3