Long-term forecasting system using wavelet – nonlinear autoregressive neural network conjunction model

Author:

Kummong Ratree,Supratid Siriporn

Abstract

Purpose An accurate long-term multi-step forecast provides crucial basic information for planning and reinforcing managerial decision-support. However, nonstationarity and nonlinearity, normally consisted of several types of managerial data can seriously ruin the forecasting computation. This paper aims to propose an effective long-term multi-step forecasting conjunction model, namely, wavelet–nonlinear autoregressive neural network (WNAR) conjunction model. The WNAR combines discrete wavelet transform (DWT) and nonlinear autoregressive neural network (NAR) to cope with such nonstationarity and nonlinearity within the managerial data; as a consequence, provides insight information that enhances accuracy and reliability of long-term multi-step perspective, leading to effective management decision-making. Design/methodology/approach Based on WNAR conjunction model, wavelet decomposition is executed for efficiently extracting hidden significant, temporal features contained in each of six benchmark nonstationary data sets from different managerial domains. Then, each extracted feature set at a particular resolution level is fed into NAR for the further forecast. Finally, NAR forecasting results are reconstructed. Forecasting performance measures throughout 1 to 30-time lags rely on mean absolute percentage error (MAPE), root mean square error (RMSE), Nash-Sutcliffe efficiency index or the coefficient of efficiency (Ef) and Diebold–Mariano (DM) test. An effect of data characteristic in terms of autocorrelation on forecasting performances of each data set are observed. Findings Long-term multi-step forecasting results show the best accuracy and high-reliability performance of the proposed WNAR conjunction model over some other efficient forecasting models including a single NAR model. This is confirmed by DM test, especially for the short-forecasting horizon. In addition, rather steady, effective long-term multi-step forecasting performances are yielded with slight effect from time lag changes especially for the data sets having particular high autocorrelation, relative against 95 per cent degree of confidence normal distribution bounds. Research limitations/implications The WNAR, which combines DWT with NAR can be accounted as a bridge for the gap between machine learning, engineering signal processing and management decision-support systems. Thus, WNAR is referred to as a forecasting tool that provides insight long-term information for managerial practices. However, in practice, suitable exogenous input forecast factors are required on the managerial domain-by-domain basis to correctly foresee and effectively prepare necessary reasonable management activities. Originality/value Few works have been implemented to handle the nonstationarity, consisted of nonlinear managerial data to attain high-accurate long-term multi-step forecast. Combining DWT and NAR capabilities would comprehensively and specifically deal with the nonstationarity and nonlinearity difficulties at once. In addition, it is found that the proposed WNAR yields rather steady, effective long-term multi-step forecasting performance throughout specific long time lags regarding the data, having certainly high autocorrelation levels across such long time lags.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3