Knowledge discovery of correlations between unsafe behaviors within construction accidents

Author:

Guo ShengyuORCID,Zhao Yujia,Luoren Yuqiu,Liang Kongzheng,Tang Bing

Abstract

PurposeKnowledge discovery related to unsafe behaviors promotes the performance of accident prevention in construction. Although numerous studies on accident causation models have discussed the correlations of unsafe behaviors with various factors (e.g., unsafe conditions), limited research explores correlations between unsafe behaviors within accidents. The purpose of this paper is mining strong association rules of unsafe behaviors from historical accidents to clarify this kind of tacit knowledge.Design/methodology/approachA case study was adopted as the research approach, in which accident records from building and urban railway construction in China were selected as data resources. The groups of unsafe behaviors extracted from accident records were expressed by the definitions of unsafe behaviors from safety regulations and operating procedures. Frequent Pattern (FP)-Growth algorithm was used for association rule mining, and the critical correlations between unsafe behaviors were represented by the effective strong rules.FindingsThe findings identify and distinguish correlations between unsafe behaviors within construction accidents. In building construction, workers and managers should pay attention to preventing unsafe behaviors related to personal protective equipment and machines and equipment. In urban railway construction, workers should especially avoid unsafe behaviors of inadequately dealing with environmental factors.Practical implicationsTacit knowledge is transferred to explicit knowledge as the critical correlations between unsafe behaviors within accidents are determined by the effective strong rules. Additionally, the findings provide practice guidance for safety management, to collaboratively control unsafe behaviors with strong correlations.Originality/valueThis study contributes to the body of safety knowledge in construction and provides a further understanding of how construction accidents are caused by multiple unsafe behaviors.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference62 articles.

1. Applications of association rule mining in health informatics: a survey;Artificial Intelligence Review,2017

2. Pattern extraction for high-risk accidents in the construction industry: a data-mining approach;International Journal of Injury Control and Safety Promotion,2016

3. Unlocking the green opportunity for prefabricated buildings and construction in China;Resources, Conservation and Recycling,2018

4. Combining accident modeling and quantitative risk assessment in safety management;Advances in Mechanical Engineering,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3