Taper stacking for the aerodynamic performance of wings

Author:

Kaya Mustafa,Elfarra Munir Ali

Abstract

Purpose The critical Mach number, lift-to-drag ratio and drag force play important role in the performance of the wings. This paper aims to investigate the effect of taper stacking, which has been used to generalize wing sweeping, on those parameters. Design/methodology/approach The results obtained are based on steady-state turbulent flowfields computations. The baseline wing is ONERA M6. Various wing planforms are generated by linearly or parabolically varying the spanwise stacking location. The critical Mach number is determined by changing the freestream Mach number for a fixed angle of attack. On the other hand, the analysis of the drag force is carried out by changing the angle of attack to keep the lift force constant. Findings By changing the stacking location, the critical Mach number and the corresponding lift-to-drag ratio have increased by around 7 and 3%, respectively. A reduction of 12.8% in total drag force has been observed in one of the analyzed cases. Moreover, there exist some cases in which the values of drag reduce significantly while the lift is the same. Practical implications The results of this new stacking approach have implied that the drag force can be decreased without decreasing the lift. This outcome is valuable for increasing the range and endurance of an aircraft. Originality/value This work generalizes wing sweeping by modifying the taper stacking along the span. In literature, wing sweep is enhanced using segmented stacking of taper distribution. The present study is further enhancing this concept by introducing continuous stacking (infinite number of stacking segments) for the first time.

Publisher

Emerald

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3