The enhancement of the prescribed track for unmanned air vehicles

Author:

Usanmaz Oznur,Karaderili Murat,Sahin Ozlem,Savaş Tamer

Abstract

Purpose Unmanned aerial vehicles (UAVs) are more affected by adverse wind conditions in especially landing. Therefore, they need to change the runway in use. In case of this change, to eliminate the uncertain maneuvers, there is a need for a special prescribed track. The purpose of this study is the construction of a prescribed track at a single runway to provide a facility to change the runway in use. Design/methodology/approach Two forms of prescribed tracks, as standard and alternate, were constructed for UAVs by taking into consideration the key parameters to design flight procedures. Both tracks were assessed in a real-time simulation method. Moreover, unmanned vehicle simulation was used for a validation process. Findings According to the real-time simulation results, 8.14 NM and 6.64 NM of flight distance and 5.43 min and 4.43 min of flight time for the standard and alternate prescribed tracks were found, respectively. The obtained results were in favor of the alternate prescribed track. Furthermore, the prescribed track was assessed and validated in both air traffic control and UAV simulations. The feedback of pilots and controllers was very positive for a prescribed track, as it provided them with foresight and time to take care in any situations. Practical implications The prescribed track in this paper may be applied by airspace designers and UAV users to perform safe and efficient landing in adverse wind conditions. Originality/value In this study, a prescribed track was constructed for UAVs. Quantitative results were achieved using a real-time simulation method in terms of flight distance and flight time. Additionally, validation of the prescribed track was achieved by unmanned air vehicle simulation.

Publisher

Emerald

Subject

Aerospace Engineering

Reference26 articles.

1. Lightweight unmanned aerial vehicles will revolutionize spatial ecology;Frontiers in Ecology and the Environment,2013

2. Classification of unmanned aerial vehicles;Mechanical Engineering,2007

3. A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion;Mechanism and Machine Theory,2009

4. Cavoukian, A. (2012), “Privacy and drones: unmanned aerial vehicles”, Information and Privacy Commissioner of Ontario, pp. 1-30, available at: www.ipc.on.ca/wp-content/uploads/resources/pbd-drones.pdf

5. Autopilots for small unmanned aerial vehicles: a survey;International Journal of Control, Automation and Systems,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3