A review on computational studies on hydrogen combustion for gas turbine applications

Author:

A. Shankar,K.M. Parammasivam,Surya Narayanan Subramanian

Abstract

Purpose The purpose of this paper is to provide an overview of the computational progress in the development of hydrogen-fired gas turbines. This review aims to identify suitable combustion models, appropriate NOx chemistry mechanisms and NOx emission levels for effective utilization of hydrogen as an alternative fuel in gas turbines. Design/methodology/approach Hydrogen is recognized as a potential alternative fuel for achieving exceptionally low emissions in gas turbines. The developments in conventional, trapped vortex combustor and micromix combustors are discussed, along with various computational models aimed at accurately predicting combustion and emission characteristics. The results of numerical simulations were then discussed with emphasis on their role in optimizing the combustor geometry. Findings Computational studies that were used to optimize the combustor geometry to reduce NOx emissions and the flashback phenomenon are discussed. To retrofit existing gas turbines for hydrogen fuel, minor modifications that are required were discussed by analyzing extensive literature. The influence of key design and geometrical parameters on NOx emissions and the appropriate selection of combustion models for numerical simulations in optimizing various combustion systems are elaborated. Originality/value The review emphasizes the computational studies in the progress of hydrogen-fired gas turbine developments. The previous reviews were primarily focused on the combustion technologies for hydrogen-fired gas turbines. This comprehensive review focuses on the key design parameters, flame structure, selection of combustion models, combustion efficiency improvement and impact of parametric studies on NOx formation of various combustion systems, in particular hydrogen combustion for gas turbine applications.

Publisher

Emerald

Reference52 articles.

1. Injector design space exploration for an ultra-low NOx hydrogen micromix combustion system,2019

2. Investigation of a pure hydrogen fueled gas turbine burner;International Journal of Hydrogen Energy,2017

3. Numerical redesign of 100 kW MGT combustor for 100% H2 fueling;Energy Procedia,2014

4. Hydrogen fueled dry low NOx gas turbine combustor conceptual design,2014

5. Numerical investigation into fuel–air mixing characteristics and cold flow field of single hydrogen-rich micromix nozzle;Fuel,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3