Spin flight mode identification with OEEMD algorithm

Author:

Mokhtari S. Abolfazl,Sabzehparvar Mehdi

Abstract

Purpose The paper aims to present an innovative method for identification of flight modes in the spin maneuver, which is highly nonlinear and coupled dynamic. Design/methodology/approach To fix the mode mixing problem which is mostly happen in the EMD algorithm, the authors focused on the proposal of an optimized ensemble empirical mode decomposition (OEEMD) algorithm for processing of the flight complex signals that originate from FDR. There are two improvements with the OEEMD respect to the EEMD. First, this algorithm is able to make a precise reconstruction of the original signal. The second improvement is that the OEEMD performs the task of signal decomposition with fewer iterations and so with less complexity order rather than the competitor approaches. Findings By applying the OEEMD algorithm to the spin flight parameter signals, flight modes extracted, then with using systematic technique, flight modes characteristics are obtained. The results indicate that there are some non-standard modes in the nonlinear region due to couplings between the longitudinal and lateral motions. Practical implications Application of the proposed method to the spin flight test data may result accurate identification of nonlinear dynamics with high coupling in this regime. Originality/value First, to fix the mode mixing problem in EMD, an optimized ensemble empirical mode decomposition algorithm is introduced, which disturbed the original signal with a sort of white Gaussian noise, and by using white noise statistical characteristics the OEEMD fix the mode mixing problem with high precision and fewer calculations. Second, by applying the OEEMD to the flight output signals and with using the systematic method, flight mode characteristics which is very important in the simulation and controller designing are obtained.

Publisher

Emerald

Subject

Aerospace Engineering

Reference32 articles.

1. Control law affect on spin characteristics of aerodynamically asymmetric aircraft,2017

2. Optimizing approach for sifting process to solve a common type of empirical mode decomposition mode mixing;World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering,2017

3. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction;Biomedical Signal Processing and Control,2018

4. Estimation of flight modes with Hilbert-Huang transform;Aircraft Engineering and Aerospace Technology Journal,2015

5. A local and online sifting process for the empiric al mode decomposition and its application in aircraft damage detection;Mechanical Systems and Signal Processing,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3