Novel coupled model for power loss prediction in a record-breaking electric aircraft motor

Author:

Goraj Robert

Abstract

PurposeThe purpose of this paper is to devise an analytical approach to calculate conductor winding losses, considering multiple contributing aspects simultaneously. These include the geometric configuration of coil windings, frequency of the electric current and the dependency on the coil temperature, derived studying a coupled fluid–solid model considering the cooling system characteristics. The obtained results allow identifying power loss trends according to such system variables as coolant inlet temperature or overall flow rate of the motor.Design/methodology/approachAn easy-to-use coupled analytical approach is applied, which is suitable for rapid estimations of the impact of parameter variation on the resulting conductor winding power losses that facilitates decision-making in the design process of electric aircraft engines.FindingsIn the considered cooling parameters, the overall conductor winding power losses vary approximately between 6 kW and 7.2 kW. More than 95 per cent of this loss is because of direct current losses. These losses cause the variation in maximal coil temperature ranging between 115°C and 170°C.Practical implicationsThe SP260D motor is set and was currently tested in Extra 330. It recently broke two world records.Social implicationsOne of the current trends in aircraft engineering is electric aircraft. Advantages of electric aircraft include improved manoeuvrability because of greater torque from electric motors, increased safety because of decreased chance of mechanical failure, less risk of explosion or fire in the event of a collision and less noise. There will be environmental and cost benefits associated with the elimination of dependency on fossil fuels and resultant emissions.Originality/valueThe use of a novel fluid–solid interaction model for predicting conductor winding power loss of the SP260D electric aircraft motor has not been done earlier. A novel alternative derivation of the widely applied Dowell’s formula (Dowell, 1966) is presented for the estimation of proximity losses in square winding conductors.

Publisher

Emerald

Subject

Aerospace Engineering

Reference33 articles.

1. Bade, M. and Möhle, A. (2004), Patent No. DE 103 20 703 A1.

2. Bienlek, K. and Heumann, A. (1987), Patent No. EP 0 255 723 A1.

3. High frequency conductor losses in switch mode magnetics;Technical Papers of the First International High Frequency Power Conversion Conference,1986

4. Two-dimensional analytical airgap field model of an inset permanent magnet synchronous machine, taking into account the slotting effect;IEEE Transactions on Magnetics,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3