Author:
Jarolmasjed Seyedamin,Davoodi Behnam,Pourebrahim Alamdari Babak
Abstract
PurposeThe purpose of this paper is to machine the pressure surface of the turbine blade made of A286 iron-based superalloy by using four directions of raster strategy, including horizontal upward, horizontal downward, vertical upward and vertical downward, to achieve appropriate surface roughness and to investigate the tool wear in each strategy.Design/methodology/approachIn this study, all cutting tests were performed by DAHLIH-MCV 1020 BA vertical 3-axis machining center with ball nose end mill. After milling by each strategy, according to the surface slope, the surface was divided into 27 meshes, and roughness of surface was studied and compared. Roughness measuring after machining was implemented by using portable Mahr ps1 roughness tester, and surface texture was photographed by CCD 100× optical zoom camera. Also, to measure tool flank wear in each strategy as an indication of tool life, the surface of workpiece was divided into four equal areas. The wear of the inserts was measured by ARCS vertical non-contact measuring system at the end of each area.FindingsThe results indicate that cutting directions and toolpath strategies have significant influence on tool wear and surface roughness in machining processes and that they can be taken into consideration individually as determinative parameters. In this case, the most uniform surface texture and the lowest surface roughness are obtained by using horizontal downward direction; in addition, abrasion is a dominant tool wear mechanism in all experiments, and tool wear in the horizontal downward is lower than other strategies.Practical implicationsMachining of turbine blades or other airfoil-shaped workpieces is quite common in manufacturing aerospace and aircraft products. The results of this research contribute to increasing quality of machined surface and tool life in machining of turbine blade.Originality/valueThis work proves the significance of milling strategies in machining of the turbine blade made of A286 superalloy and, consequently, exhibits the proper strategy in terms of surface roughness and tool life. Also, this work explains and elaborates the behavior of A286 superalloy in machining processes, which has not been studied much in recent research works.
Reference35 articles.
1. Wear mechanisms of WC coated and uncoated tools in finish turning of inconel 718;Tribology International,2010
2. Tool path strategy and cutting process monitoring in intelligent machining;Frontiers of Mechanical Engineering,2017
3. Simulation and evaluation of different process strategies in a 5-axis re-contouring process;Procedia CIRP,2015
4. Cutting forces and wear in dry machining of inconel 718 with coated carbide tools;Wear,2007
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献