A review of computational studies on trapped vortex combustors for gas turbine applications

Author:

Surya Narayanan Subramanian,K.M. Parammasivam

Abstract

Purpose The purpose of this paper is to comprehensively evaluate the progress in the development of trapped vortex combustors (TVCs) in the past three decades. The review aims to identify the needs, predict the scope and discuss the challenges of numerical simulations in TVCs applied to gas turbines. Design/methodology/approach TVC is an emerging combustion technology for achieving low emissions in gas turbine combustors. The overall operation of such TVCs can be on very lean mixture ratio and hence it helps in achieving high combustion efficiency and low overall emission levels. This review introduces the TVC concept and the evolution of this technology in the past three decades. Various geometries that were explored in TVC research are listed and their operating principles are explained. The review then categorically arranges the progress in computational studies applied to TVCs. Findings Analyzing extensive literature on TVCs the review discusses results of numerical simulations of various TVC geometries. Numerical simulations that were used to optimize TVC geometry and to enhance mixing are discussed. Reactive flow studies to comprehend flame stability and emission characteristics are then listed for different TVC geometries. Originality/value To the best of the authors’ knowledge, this review is the first of its kind to discuss extensively the computational progress in TVC development specific to gas turbine engines. Earlier review on TVC covers a wide variety of applications including land-based gas turbines, supersonic Ramjets, incinerators and hence compromise on the depth of analysis given to gas turbine engine applications. This review also comprehensively group the numerical studies based on geometry, flow and operating conditions.

Publisher

Emerald

Subject

Aerospace Engineering

Reference71 articles.

1. Flow-acoustic characterisation of a cavity-based combustor configuration;Defence Science Journal,2011

2. Mixing enhancement in a compact trapped vortex combustor;Combustion Science and Technology,2013

3. Experimental studies of cavity and core flow interactions with application to ultra-compact combustors;Journal of Engineering for Gas Turbines and Power,2014

4. The development of a lean premixed trapped vortex combustor,2003

5. Performance assessment of a prototype trapped vortex combustor concept for gas turbine application,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3