Analysis of damage characteristics of an aeroelastic model for air-breathing hypersonic vehicles

Author:

Guo Zhongge,Li Yunxin,Wang Yuhui

Abstract

Purpose To suppress fatigue damage and ensure structural safety, this paper aims to analyze the effect of the damage accumulation on the aeroelastic model of an air-breathing hypersonic flight vehicle (AHFV). Design/methodology/approach Initially, by constructing the modified longitudinal elastic model of an AHFV, the stress condition of the fuselage is analyzed, and the model differences with the rigid body are studied. Then, a new damage dynamic model is presented to describe the damage dynamic evolution. Finally, combining the damage model and the longitudinal model of the AHFV, the key variables affecting the damage accumulation are determined. Findings It is demonstrated that the elastic deformation must be considered when analyzing the damage characteristics of the fuselage and to determine the key variables that affect the damage accumulation, which provides a more accurate reference for improving the structural reliability and lifespan of AHFVs. Originality/value The novelty of this paper comes from the application of the force and stress models for the damage evolution of the AHFV and the development of a new damage model for the entire body with the elastic dynamics of AHFVs.

Publisher

Emerald

Subject

Aerospace Engineering

Reference21 articles.

1. Aerodynamic characterization of the hyper-X launch vehicle,2003

2. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle,2005

3. Prediction of service life for machines and structures;Journal of Pressure Vessel Technology,1990

4. Life-extending control of a reusable rocket engine,1997

5. The hyper-X launch vehicle: challenges and design considerations for hypersonic flight testing,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3