Learning representations of Web entities for entity resolution

Author:

Barbosa Luciano

Abstract

Purpose Matching instances of the same entity, a task known as entity resolution, is a key step in the process of data integration. This paper aims to propose a deep learning network that learns different representations of Web entities for entity resolution. Design/methodology/approach To match Web entities, the proposed network learns the following representations of entities: embeddings, which are vector representations of the words in the entities in a low-dimensional space; convolutional vectors from a convolutional layer, which capture short-distance patterns in word sequences in the entities; and bag-of-word vectors, created by a bow layer that learns weights for words in the vocabulary based on the task at hand. Given a pair of entities, the similarity between their learned representations is used as a feature to a binary classifier that identifies a possible match. In addition to those features, the classifier also uses a modification of inverse document frequency for pairs, which identifies discriminative words in pairs of entities. Findings The proposed approach was evaluated in two commercial and two academic entity resolution benchmarking data sets. The results have shown that the proposed strategy outperforms previous approaches in the commercial data sets, which are more challenging, and have similar results to its competitors in the academic data sets. Originality/value No previous work has used a single deep learning framework to learn different representations of Web entities for entity resolution.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference34 articles.

1. Swoosh: a generic approach to entity resolution;The VLDB JournalThe International Journal on Very Large Data Bases,2009

2. A latent dirichlet model for unsupervised entity resolution,2006

3. Adaptive duplicate detection using learnable string similarity measures,2003

4. Signature verification using a ‘siamese’ time delay neural network;International Journal of Pattern Recognition and Artificial Intelligence,1993

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Lingual Learning Strategies for Improving Product Matching Quality;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08

2. NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet;Computer Modeling in Engineering & Sciences;2024

3. Using Machine Learning and NLP for the Product Matching Problem;Intelligent Sustainable Systems;2023

4. Linking place records using multi-view encoders;Neural Computing and Applications;2021-03-27

5. DEM: Deep Entity Matching Across Heterogeneous Information Networks;Journal of Computer Science and Technology;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3