Robot skill learning and the data dilemma it faces: a systematic review

Author:

Jiang Rong,He Bin,Wang Zhipeng,Cheng Xu,Sang Hongrui,Zhou Yanmin

Abstract

Purpose Compared with traditional methods relying on manual teaching or system modeling, data-driven learning methods, such as deep reinforcement learning and imitation learning, show more promising potential to cope with the challenges brought by increasingly complex tasks and environments, which have become the hot research topic in the field of robot skill learning. However, the contradiction between the difficulty of collecting robot–environment interaction data and the low data efficiency causes all these methods to face a serious data dilemma, which has become one of the key issues restricting their development. Therefore, this paper aims to comprehensively sort out and analyze the cause and solutions for the data dilemma in robot skill learning. Design/methodology/approach First, this review analyzes the causes of the data dilemma based on the classification and comparison of data-driven methods for robot skill learning; Then, the existing methods used to solve the data dilemma are introduced in detail. Finally, this review discusses the remaining open challenges and promising research topics for solving the data dilemma in the future. Findings This review shows that simulation–reality combination, state representation learning and knowledge sharing are crucial for overcoming the data dilemma of robot skill learning. Originality/value To the best of the authors’ knowledge, there are no surveys that systematically and comprehensively sort out and analyze the data dilemma in robot skill learning in the existing literature. It is hoped that this review can be helpful to better address the data dilemma in robot skill learning in the future.

Publisher

Emerald

Reference168 articles.

1. Learning to poke by poking: experiential learning of intuitive physics;Advances in Neural Information Processing Systems,2016

2. Autoencoder-augmented neuroevolution for visual doom playing,2017

3. A survey of inverse reinforcement learning: challenges, methods and progress;Artificial Intelligence,2021

4. On-line simultaneous learning and recognition of everyday activities from virtual reality performances,2017

5. Self-supervised learning for precise pick-and-place without object model;IEEE Robotics and Automation Letters,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3