Autoregressive conditional duration models for high frequency financial data: an empirical study on mid cap exchange traded funds

Author:

Nunkoo Houmera Bibi Sabera,Gonpot Preethee Nunkoo,Sookia Noor-Ul-Hacq,Ramanathan T.V.

Abstract

Purpose The purpose of this study is to identify appropriate autoregressive conditional duration (ACD) models that can capture the dynamics of tick-by-tick mid-cap exchange traded funds (ETFs) for the period July 2017 to December 2017 and accurately predict future trade duration values. The forecasted durations are then used to demonstrate the practical usefulness of the ACD models in quantifying an intraday time-based risk measure. Design/methodology/approach Through six functional forms and six error distributions, 36 ACD models are estimated for eight mid-cap ETFs. The Akaike information criterion and Bayesian information criterion and the Ljung-Box test are used to evaluate goodness-of-fit while root mean square error and the Superior predictive ability test are applied to assess forecast accuracy. Findings The Box-Cox ACD (BACD), augmented Box-Cox ACD (ABACD) and additive and multiplicative ACD (AMACD) extensions are among the best fits. The results obtained prove that higher degrees of flexibility do not necessarily enhance goodness of fit and forecast accuracy does not always depend on model adequacy. BACD and AMACD models based on the generalised-F distribution generate the best forecasts, irrespective of the trading frequencies of the ETFs. Originality/value To the best of the authors’ knowledge, this is the first study that analyses the empirical performance of ACD models for high-frequency ETF data. Additionally, in comparison to previous works, a wider range of ACD models is considered on a reasonably longer sample period. The paper will be of interest to researchers in the area of market microstructure and to practitioners engaged in high-frequency trading.

Publisher

Emerald

Subject

General Economics, Econometrics and Finance

Reference41 articles.

1. The positive effects of financial innovation on the international trade volume,2021

2. Comparison of alternative ACD models via density and interval forecasts: evidence from the Australian stock market;Mathematics and Computers in Simulation,2009

3. Realized kernels in practice: trades and quotes;The Econometrics Journal,2009

4. The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks;Annales d’Economie et de Statistique,2000

5. A comparison of financial duration models via density forecasts;International Journal of Forecasting,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3