Biomechanical design of lightweight full contacted insole based on structural anisotropy bespoke

Author:

Tu Zhengxin,Xu Jinghua,Zhang Shuyou,Tan Jianrong

Abstract

PurposeA biomechanical design method of lightweight full contacted insole based on structural anisotropy bespoke (SAB) is proposed, which can better redistribute the stress distribution of SAB designed personalized insole.Design/methodology/approachThe reconstructed joint biomechanics are simulated using finite element analysis (FEA) to develop a lightweight full contact insole. Innovatively, the anisotropic properties of the triply periodic minimal surface (TPMS) structure, which contribute to reducing insole weight, are considered to optimize stress distribution. Additionally, porosity and manufacturing time are included as design objectives. To validate the lightweight insole design, FEA is employed to simulate the stress distribution of the ergonomic insole, which can be fabricated by additive manufacturing (AM) with TPU.FindingsWith a little 0.924% loss in porosity, the maximum stress of lightweight SAB designed insoles is extremely decreased by 19.2917%.Originality/valueThe biomechanical design of the lightweight full contact insole based on SAB can effectively redistribute stress, avoid stress concentration and improve the mechanical properties of the ergonomic individual insole.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3