Author:
Fashu Simbarashe,Khan Rajwali
Abstract
PurposeThin coatings are of great importance to minimize corrosion attack of steel in different environments. A review of recent work on electrodeposition and corrosion performance of Zn-Ni-based alloys for sacrificial corrosion protection of ferrous substrates is presented. The purpose of this study is to provide a systematic comparison of the corrosion resistances of Zn-Ni alloy coatings. The review contains key and outstanding comparisons of references for the period from 2007 to 2017. Binary and ternary Zn-Ni-based alloys were compared and contrasted to provide a good knowledge basis for selection of best coating system to steel substrates.Design/methodology/approachThis article is a review article.FindingsZn-Ni-(X) alloys show great potential for replacing Cd metal in corrosion protection of steel substrates.Practical implicationsThe research on plating of binary Zn-Ni alloys from aqueous electrolytes is now well advanced and these alloys show improved corrosion resistance compared to pure Zn. Pulse plated and compositionally modulated multilayer Zn-Ni alloy coatings showed enhanced corrosion properties compared to direct plated Zn-Ni coatings of similar composition.Originality/valueThe work on electrodeposition of Zn-Ni based alloys from ionic liquids is still scarce, yet these liquids show great promise in improving corrosion resistance and reducing coating thickness when compared to aqueous electrolytes. Advanced plating techniques in ionic liquids such as electromagnetic, compositionally modulated multilayer, pulse plating, ternary alloys and composites should be considered as these electrolytes avoid water chemistry and associated defects.
Subject
General Materials Science,General Chemical Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献