Contact tracing and mobility pattern detection during pandemics – a trajectory cluster based approach

Author:

A. Nishad,Abraham Sajimon

Abstract

Purpose A wide number of technologies are currently in store to harness the challenges posed by pandemic situations. As such diseases transmit by way of person-to-person contact or by any other means, the World Health Organization had recommended location tracking and tracing of people either infected or contacted with the patients as one of the standard operating procedures and has also outlined protocols for incident management. Government agencies use different inputs such as smartphone signals and details from the respondent to prepare the travel log of patients. Each and every event of their trace such as stay points, revisit locations and meeting points is important. More trained staffs and tools are required under the traditional system of contact tracing. At the time of the spiralling patient count, the time-bound tracing of primary and secondary contacts may not be possible, and there are chances of human errors as well. In this context, the purpose of this paper is to propose an algorithm called SemTraClus-Tracer, an efficient approach for computing the movement of individuals and analysing the possibility of pandemic spread and vulnerability of the locations. Design/methodology/approach Pandemic situations push the world into existential crises. In this context, this paper proposes an algorithm called SemTraClus-Tracer, an efficient approach for computing the movement of individuals and analysing the possibility of pandemic spread and vulnerability of the locations. By exploring the daily mobility and activities of the general public, the system identifies multiple levels of contacts with respect to an infected person and extracts semantic information by considering vital factors that can induce virus spread. It grades different geographic locations according to a measure called weightage of participation so that vulnerable locations can be easily identified. This paper gives directions on the advantages of using spatio-temporal aggregate queries for extracting general characteristics of social mobility. The system also facilitates room for the generation of various information by combing through the medical reports of the patients. Findings It is identified that context of movement is important; hence, the existing SemTraClus algorithm is modified by accounting for four important factors such as stay point, contact presence, stay time of primary contacts and waypoint severity. The priority level can be reconfigured according to the interest of authority. This approach reduces the overwhelming task of contact tracing. Different functionalities provided by the system are also explained. As the real data set is not available, experiments are conducted with similar data and results are shown for different types of journeys in different geographical locations. The proposed method efficiently handles computational movement and activity analysis by incorporating various relevant semantics of trajectories. The incorporation of cluster-based aggregate queries in the model do away with the computational headache of processing the entire mobility data. Research limitations/implications As the trajectory of patients is not available, the authors have used the standard data sets for experimentation, which serve the purpose. Originality/value This paper proposes a framework infrastructure that allows the emergency response team to grab multiple information based on the tracked mobility details of a patient and facilitates room for various activities for the mitigation of pandemics such as the prediction of hotspots, identification of stay locations and suggestion of possible locations of primary and secondary contacts, creation of clusters of hotspots and identification of nearby medical assistance. The system provides an efficient way of activity analysis by computing the mobility of people and identifying features of geographical locations where people travelled. While formulating the framework, the authors have reviewed many different implementation plans and protocols and arrived at the conclusion that the core strategy followed is more or less the same. For the sake of a reference model, the Indian scenario is adopted for defining the concepts.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference67 articles.

1. Accenture (2020), “Stop corona”, available at: www.stopp-corona.at/ (accessed 28 December 2021).

2. EPIC: efficient privacy-preserving contact tracing for infection detection,2018

3. A model for enriching trajectories with semantic geographical information,2007

4. Digital contact tracing technologies in epidemics: a rapid review;Cochrane Database of Systematic Reviews,2020

5. Outbreak investigation of Nipah virus disease in Kerala, India, 2018;The Journal of Infectious Diseases,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3