Author:
S. Kannan,K. Somasundaram
Abstract
Purpose
Due to the large-size, non-uniform transactions per day, the money laundering detection (MLD) is a time-consuming and difficult process. The major purpose of the proposed auto-regressive (AR) outlier-based MLD (AROMLD) is to reduce the time consumption for handling large-sized non-uniform transactions.
Design/methodology/approach
The AR-based outlier design produces consistent asymptotic distributed results that enhance the demand-forecasting abilities. Besides, the inter-quartile range (IQR) formulations proposed in this paper support the detailed analysis of time-series data pairs.
Findings
The prediction of high-dimensionality and the difficulties in the relationship/difference between the data pairs makes the time-series mining as a complex task. The presence of domain invariance in time-series mining initiates the regressive formulation for outlier detection. The deep analysis of time-varying process and the demand of forecasting combine the AR and the IQR formulations for an effective outlier detection.
Research limitations/implications
The present research focuses on the detection of an outlier in the previous financial transaction, by using the AR model. Prediction of the possibility of an outlier in future transactions remains a major issue.
Originality/value
The lack of prior segmentation of ML detection suffers from dimensionality. Besides, the absence of boundary to isolate the normal and suspicious transactions induces the limitations. The lack of deep analysis and the time consumption are overwhelmed by using the regression formulation.
Subject
Law,General Economics, Econometrics and Finance,Public Administration
Reference27 articles.
1. Rough sets, kernel set, and spatiotemporal outlier detection;IEEE Transactions on Knowledge and Data Engineering,2014
2. Anyout: anytime outlier detection on streaming data,2012
3. CID: an efficient complexity-invariant distance for time series;Data Mining and Knowledge Discovery,2014
4. Money laundering detection system (MLD),2013
5. Robust support vector data description for outlier detection with noise or uncertain data;Knowledge-Based Systems,2015
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献