New model of long-term changes in spatiotemporal patterns of water quality across Shatt-Al-Arab River by applying GIS technique, from 1976 to 2020

Author:

Lazem Laith F.ORCID

Abstract

PurposeUsing a combination of the geographical information system (GIS) and the Canadian water quality index (WQI), the current study sought to provide a long-term general assessment of the water quality of the Shatt Al-Arab River (SAAR), focusing on its suitability for living organisms. Likewise, SPSS statistics was used to develop a nonlinear WQI regression model for the study area.Design/methodology/approachThe study required four decades of data collection on some environmental characteristics of river water. After that, calculate the WQI and conduct the spatial analysis. Eight variables in total, including water temperature, dissolved oxygen, potential hydrogen ions, electrical conductivity (EC), biological oxygen demand, turbidity, nitrate and phosphate, were chosen to calculate the WQI.FindingsThroughout the study periods, the WQI values varied from 55.2 to 79.83, falling into the categories of four (marginal) and three (fair), with the sixth period (2007–2008) showing the most decline. The present research demonstrated that the high concentration of phosphates, the high EC values, and minor changes in the other environmental factors are the major causes of the decline in water quality. The variations in ecological variables' overlap are a senior contributor to changes in water quality in general. Notably, using GIS in conjunction with the WQI has shown to be very effective in reducing the time and effort spent on investigating water quality while obtaining precise findings and information at the lowest possible expense. Calibration and validation of the developed model showed that this model had a perfect estimate of the WQI value. Due to its flexibility and impartiality, this study recommends using the proposed model to estimate and predict the WQI in the study area.Originality/valueEven though the water quality of the SAAR has been the subject of numerous studies, this is the only long-term investigation that has been done to evaluate and predict its water quality.

Publisher

Emerald

Subject

Water Science and Technology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics,General Biochemistry, Genetics and Molecular Biology,General Business, Management and Accounting,General Computer Science,General Medicine,General Environmental Science,Education

Reference45 articles.

1. Climate change in the temperature and rain of Iraq;Basic Education College Magazine For Educational and Humanities Sciences,2019

2. Improve the self-purification of the Shatt al-Arab rivers system using simulation models;International Journal of River Basin Management,2022

3. Effect of Hartha and Najibia power plants on water quality indices of Shatt Al-Arab River, south of Iraq;Applied Water Science,2018

4. Geomatic freshwater discharge estimations and their effect on saltwater intrusion in alluvial systems: A case study in Shatt Al-Arab estuary;Environmental Earth Sciences,2021

5. Mineralogical variation of the banks of Shatt Al-Arab and Shatt Al-Basrah river sediments in southern Iraq;The Iraqi Geological Journal,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3