Author:
Qi Ruolong,Zhou Weijia,Zhang Huijie,Zhang Wei,Yang Guangxin
Abstract
Purpose
The weld joint of large thin-wall metal parts which deforms in manufacturing and clamping processes is very difficult to manufacture for its shape is different from the initial model; thus, the space normals of the part surface are uncertain.
Design/methodology/approach
In this paper, an effective method is presented to calculate cutter location points and to estimate the space normals by measuring some sparse discrete points of weld joint. First, a contact-type probe fixed in the end of friction stir welding (FSW) robot is used to measure a series of discrete points on the weld joint. Then, a space curve can be got by fitting the series of points with a quintic spline. Second, a least square plane (LSP) of the measured points is obtained by the least square method. Then, normal vectors of the plane curve, which is the projection of the space curve on the LSP, are used to estimate the space normals of the weld joint curve. After path planning, a post-processing method combing with FSW craft is elaborated.
Findings
Simulation and real experiment demonstrate that the proposed strategy, which obtains cutter locations of welding and normals without measuring the entire surface, is feasible and effective for the FSW of large thin-walled complex surface parts.
Originality/value
This paper presents a novel method which makes it possible to accurately weld the large thin-wall complex surface part by the FSW robot. The proposed method might be applied to any multi-axes FSW robot similar to the robot studied in this paper.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Reference26 articles.
1. Investigation of path compensation methods for robotic friction stir welding;Industrial Robot: An International Journal,2012
2. Simulation of friction stir welding using industrial robots;Industrial Robot: An International Journal,2010
3. Robotic friction stir welding;Industrial Robot: An International Journal,1973
4. The synthetical quality control for complicated shape parts processing under high-load in aircraft engine;Journal of National University of Defense Technology,1996
5. Multi-level fuzzy control of friction stir welding power;International Journal of Advanced Manufacturing Technology,2011
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献