Author:
Salari Farid,Bosetti Paolo,Sglavo Vincenzo M.
Abstract
Purpose
Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design file is sliced to generate G-codes before printing. This paper aims to study the effect of key input parameters for slicer software on the final properties of printed products.
Design/methodology/approach
The one factor at a time (OFAT) methodology is used to investigate the impact of selected parameters on the final properties of printed specimens, and the causes for the variations in outcomes of each variable are discussed.
Findings
Finer aggregates can generate a more compact layer, resulting in a denser product with higher strength. Fluid pressure is directly determined by voxel rate (rV); however, high pressures enable better fluid penetration control for fortified products; for extreme rVs, residual voids in the interfaces between successive layers and single-line primitives impair mechanical strength. It was understood that printhead movement along the orientation of the parts in the powder bed improved the mechanical properties.
Originality/value
The design of experiment (DOE) method assesses the influence of process parameters on various input printing variables at the same time. As the resources are limited, a fractional factorial plan is carried out on a subset of a full factorial design; hence, providing physical interpretation behind changes in each factor is difficult. OFAT aids in analyzing the effect of a change in one factor on output while all other parameters are kept constant. The results assist engineers in properly considering the influence of variable variations for future DOE designs.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference57 articles.
1. Conformal additive manufacturing using a direct-print process;Additive Manufacturing,2020
2. Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing;Construction and Building Materials,2018
3. 293,2002
4. Characterizing binder–powder interaction in binder jetting additive manufacturing via sessile drop goniometry;Journal of Manufacturing Science and Engineering,2019
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献