Integrating human experience in deep reinforcement learning for multi-UAV collision detection and avoidance

Author:

Wang Guanzheng,Xu Yinbo,Liu Zhihong,Xu Xin,Wang Xiangke,Yan Jiarun

Abstract

Purpose This paper aims to realize a fully distributed multi-UAV collision detection and avoidance based on deep reinforcement learning (DRL). To deal with the problem of low sample efficiency in DRL and speed up the training. To improve the applicability and reliability of the DRL-based approach in multi-UAV control problems. Design/methodology/approach In this paper, a fully distributed collision detection and avoidance approach for multi-UAV based on DRL is proposed. A method that integrates human experience into policy training via a human experience-based adviser is proposed. The authors propose a hybrid control method which combines the learning-based policy with traditional model-based control. Extensive experiments including simulations, real flights and comparative experiments are conducted to evaluate the performance of the approach. Findings A fully distributed multi-UAV collision detection and avoidance method based on DRL is realized. The reward curve shows that the training process when integrating human experience is significantly accelerated and the mean episode reward is higher than the pure DRL method. The experimental results show that the DRL method with human experience integration has a significant improvement than the pure DRL method for multi-UAV collision detection and avoidance. Moreover, the safer flight brought by the hybrid control method has also been validated. Originality/value The fully distributed architecture is suitable for large-scale unmanned aerial vehicle (UAV) swarms and real applications. The DRL method with human experience integration has significantly accelerated the training compared to the pure DRL method. The proposed hybrid control strategy makes up for the shortcomings of two-dimensional light detection and ranging and other puzzles in applications.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference40 articles.

1. Learning robot motion control with demonstration and advice-operators,2008

2. Transfer learning for reinforcement learning on a physical robot,2010

3. An interactive framework for learning continuous actions policies based on corrective feedback;Journal of Intelligent & Robotic Systems,2019

4. Pre-training neural networks with human demonstrations for deep reinforcement learning,2017

5. A hybrid approach of virtual force and a∗ search algorithm for UAV path re-planning,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the design of reward functions in deep reinforcement learning-based vehicle velocity control algorithms;Transportation Letters;2024-01-17

2. Design and implementation of virtual visualization platform for cultural and creative products based on VR/AR/MR technology;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-07-11

3. UAV reaction detection based on multi-scale feature fusion;2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML);2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3