Radar and vision fusion for the real-time obstacle detection and identification

Author:

Zhang Xinyu,Zhou Mo,Qiu Peng,Huang Yi,Li Jun

Abstract

Purpose The purpose of this paper is the presentation and research of a novel sensor fusion-based system for obstacle detection and identification, which uses the millimeter-wave radar to detect the position and velocity of the obstacle. Afterwards, the image processing module uses the bounding box regression algorithm in deep learning to precisely locate and identify the obstacles. Design/methodology/approach Unlike the traditional algorithms that use radar and vision to detect obstacles separately, the purposed method of this paper uses radar to determine the approximate location of obstacles and then uses bounding box regression to achieve accurate positioning and recognition. First, the information of the obstacles can be acquired by the millimeter-wave radar, and the effective target is extracted by filtering the data. Then, use coordinate system conversion and camera parameter calibration to project the effective target to the image plane, and generate the region of interest (ROI). Finally, based on image processing and machine learning techniques, the vehicle targets in the ROI are detected and tracked. Findings The millimeter wave is used to determine the presence of an obstacle, and the deep learning algorithm of the image is combined to determine the shape and the class of the obstacle. The experimental results indicate that the detection rate of this method is up to 91.6 per cent, which can better implement the perception of the environment in front of the vehicle. Originality/value The originality is based on the combination of millimeter-wave sensors and deep learning. Using the bounding box regression algorithm in RCNN, the ROI detected by radar is analyzed to realize real-time obstacle detection and recognition. This method does not require processing the entire image, greatly reducing the amount of data processing and improving the efficiency of the algorithm.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference13 articles.

1. Frontal object perception using radar and Mono-Vision,2011

2. Rich feature hierarchies for accurate object detection and semantic segmentation,2014

3. Radar-Vision fusion with an application to Car-following using an improved ada boost detection algorithm,2007

4. Design and implementation of vehicle obstacle ahead detection system based on radar and computer vision,2010

5. Leading vehicle detection at night based on millimeter-wave radar and machine vision;Automotive Safety and Energy,2016

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3