Optimal trajectory generation of an industrial welding robot with kinematic and dynamic constraints

Author:

Rout Amruta,Bbvl Deepak,Biswal Bibhuti B.

Abstract

Purpose This paper aims to present an optimal trajectory planning for industrial MOTOMAN MA1440A gas metal arc welding system. A new and efficient evolutionary algorithm, enhanced multi-objective teaching learning-based optimization (EMOTLBO) method, i.e. TLBO with non-dominated sorting approach has been proposed to obtain the optimal joint trajectory for the defined weld seam path. Design/methodology/approach The joint trajectory of the welding robot need to be computed in an optimal manner for proper torch orientation, smooth travel of the robot along the weld path and for achieving higher positional accuracy. This can be achieved by limiting the kinematic and dynamic variations of the robot joints like joint jerks, squared acceleration and torque induced in the joints while travel of the robot along the weld path. Also, the robot travel should be done within minimum possible time for maintaining productivity. This leads to a multi-objective optimization problem which needs to be solved for maintaining proper orientation of the robot end effector. EMOTLBO has been proposed to obtain the Pareto front consisting of optimal solutions. The fuzzy membership function has been used to obtain the optimal solution from the Pareto front with best trade-off between objectives. Findings The proposed method has been implanted in MATLAB R2017a for simulation results. The joint positions have been used to program the robot for performing welding operation along the weld seam. From the simulation and experimental results, it can be concluded that the proposed approach can be effectively used for optimal trajectory planning of MOTOMAN MA 1440 A arc welding robot system as a very smooth and uniform weld bead has been obtained with maximum weld quality. Originality/value In this paper, a novel approach for optimal trajectory planning welding arc robot has been performed. Though trajectory planning of industrial robots has been done before, it has not been done yet for welding robot. The objectives are formulated taking in consideration of requirement of welding process like minimization of joint jerks and torques induced during welding operation due to travel of robot with the effect of arc spatter, minimization of squared acceleration for maintaining constant joint velocity and finally minimization of total travel time for maintaining productivity.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference28 articles.

1. A direct approach to solving trajectory planning problems using genetic algorithms with dynamics considerations in complex environments;Robotica,2015

2. optimal trajectory planning of manipulators: a review;Journal of Engineering Science and Technology,2007

3. Simplified robot arm dynamics for control;Decision and Control Including the Symposium on Adaptive Processes, IEEE,1981

4. Tutorial robotic arc welding – trends and developments for higher autonomy;Industrial Robot: An International Journal,2002

5. Constrained time-efficient and smooth cubic spline trajectory generation for industrial robots;IEE Proceedings – Control Theory and Applications,1997

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3