Simulation of mushy state solidification in stir casting

Author:

M.T. Sijo,K.R. Jayadevan,Janardhanan Sheeja

Abstract

Purpose Stir casting is a promising technique used for the manufacture of Al-SiC metal matrix composites. The clustering of reinforcement particles is a serious concern in this production method. In this work, mushy-state solidification characteristics in stir casting are numerically simulated using computational fluid dynamics techniques to study the clustering of reinforcement particles. Design/methodology/approach Effects of process parameters on the distribution of particles are examined by varying stirrer speed, volume fraction of reinforcement, number of blades on stirrer and diameter ratio (ratio of crucible diameter to stirrer diameter). Further, investigation of characteristics of cooling curves during solidification process is carried out. Volume of fluid method in conjunction with a solidification model is used to simulate the multi-phase fluid flow during the mushy-state solidification. Solidification patterns thus obtained clearly indicate a strong influence of process parameters on the distribution of reinforcement particles and solidification time. Findings From the simulation study, it is observed that increase in stirrer speed from 50 to 150 rad/s promotes faster solidification rate. But, beyond 100 rad/s, stirrer speed limit, clustering of reinforcement particles is observed. The clustering of reinforcement particles is seen when volume fraction of reinforcement is increased beyond 10 per cent. When number of blades on stirrer are increased from three to five, an increase in solidification rate is observed, and an uneven distribution of reinforcement particles are observed for five-blade geometry. It is also seen from the simulation study that a four-blade stirrer gives a better distribution of reinforcement in the molten metal. Decrease in diameter ratio from 2.5 to 1.5 promotes faster solidification rate. Originality/value There is 90 per cent closeness in results for simulation study and the published experimental results.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference33 articles.

1. Review of effective parameters of stir casting process on metallurgical properties of ceramics particulate Al composites;IOSR Journal of Mechanical and Civil Engineering,2015

2. CFD simulations of bubble columns using the VOF model: comparison of commercial and open source solvers with an experiment;Chemical engineering Transactions,2009

3. Optimization of process parameters in stir casting of hybrid Meta matrix (LM25/SiC/B4C) composite using Taguchi method;Journal of Advances in Chemistry,2017

4. Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite;Journal of Materials Processing Technology,2006

5. Solidification behavior and forgeability of stir-cast aluminum alloy metal matrix composites;Canadian Journal of Pure and applied sciences,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3