Parameter estimation of single diode PV module based on Nelder-Mead optimization algorithm

Author:

Mohapatra Alivarani,Nayak Byamakesh,Mohanty Kanungo Barada

Abstract

Purpose This paper aims to propose a simple, derivative-free novel method named as Nelder–Mead optimization algorithm to estimate the unknown parameters of the photovoltaic (PV) module considering the environmental conditions. Design/methodology/approach At a particular temperature and irradiation, experimental current-voltage (I-V) and power-voltage (P-V) characteristics are drawn and considered as a reference model. The PV system model with unknown model parameters is considered as the adaptive model whose unknown model parameters are to be adapted so that the simulated characteristics closely matches with the experimental characteristics. A single diode (Rsh) model with five unknown model parameters is considered here for the parameter estimation. Findings The key advantages of this method are that parameters are estimated considering environmental conditions. Experimental characteristics are considered for parameter estimation which gives accurate results. Parameters are estimated considering both I-V and P-V curves as most of the applications demand extraction of the actual power from the PV module. Originality/value The proposed model is compared with other three well-known models available in the literature considering various statistical errors. The results show the superiority of the proposed model with a minimum error for both I-V and P-V characteristics.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling the Solar Irradiance Impact on Single and Double Diode Solar Cells;2024 IEEE 4th International Conference in Power Engineering Applications (ICPEA);2024-03-04

2. Lens law based optimization algorithm: a novel approach;Soft Computing;2023-04-08

3. Deep learning method based on autoencoder neural network applied to faults detection and diagnosis of photovoltaic system;Simulation Modelling Practice and Theory;2023-02

4. Hybrid Firefly Algorithm with Sine Cosine Algorithm for solar photovoltaic parameter estimation;2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM);2022-10-26

5. Parameter Estimation of Photovoltaic Module Using Sine Cosine Algorithm;Smart Technologies for Power and Green Energy;2022-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3