Effect of alloying constituents on thermal, microstructural, mechanical and shape memory properties of Cu-Al-Ag shape memory alloys

Author:

Tataverthi Sai Vamsi Krishna,Devisetty Srinivasa Rao

Abstract

Purpose The purpose of this study is to assess the influence of Al and Ag addition on thermal, mechanical and shape memory properties of Cu-Al-Ag alloy. Design/methodology/approach The material is synthesized in a controlled atmosphere to minimize the reaction of alloying elements with the atmosphere. Cast samples were homogenized, then subjected to hot rolling and further betatized, followed by step quenching. Eight samples were chosen for study among which first four samples varied in Al content, and the next set of four samples varied in Ag composition. Findings The testing yielded a result that the increase in binary alloying element decreased transformation temperature range but increased entropy and elastic energy values. It also improved the shape memory effect and mechanical properties (UTS and hardness). An increase in ternary alloying element increased transformation temperature range, entropy and elastic energy values. The shape memory effect and mechanical properties are enhanced by the increase in ternary alloying element. The study revealed that compositional variation of Al should be limited to a range of 8 to 14 Wt.% and Ag from 2 to 8 Wt.%. Microstructural and diffraction studies identified the ß’1 martensite as a desirable phase for enhancing shape memory properties. Originality/value Numerous studies have been made in exploring the transformation temperature and phase formation for similar Cu-Al-Ag shape memory alloys, but their influence on shape memory effect was not extensively studied. In the present work, the influence of Al and Ag content on shape memory characteristics is carried out to increase the design choice for engineering applications of shape memory alloy. These materials exhibit mechanical and shape memory properties within operating ranges similar to other copper-based shape memory alloys.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3