Utilization and criticality based fault-tolerant scheduling in multicore mixed critical systems

Author:

Godabole Preeti,Bhole Girish

Abstract

Purpose The main purpose of the paper is timing analysis of mixed critical applications on the multicore system to identify an efficient task scheduling mechanism to achieve three main objectives improving schedulability, achieving reliability and minimizing the number of cores used. The rise in transient faults in embedded systems due to the use of low-cost processors has led to the use of fault-tolerant scheduling and mapping techniques. Design/methodology/approach The paper opted for a simulation-based study. The simulation of mixed critical applications, like air traffic control systems and synthetic workloads, is carried out using a litmus-real time testbed on an Ubuntu machine. The heuristic algorithms for task allocation based on utilization factors and task criticalities are proposed for partitioned approaches with multiple objectives. Findings Both partitioned earliest deadline first (EDF) with the utilization-based heuristic and EDF-virtual deadline (VD) with a criticality-based heuristic for allocation works well, as it schedules the air traffic system with a 98% success ratio (SR) using only three processor cores with transient faults being handled by the active backup of the tasks. With synthetic task loads, the proposed criticality-based heuristic works well with EDF-VD, as the SR is 94%. The validation of the proposed heuristic is done with a global and partitioned approach of scheduling, considering active backups to make the system reliable. There is an improvement in SR by 11% as compared to the global approach and a 17% improvement in comparison with the partitioned fixed-priority approach with only three processor cores being used. Research limitations/implications The simulations of mixed critical tasks are carried out on a real-time kernel based on Linux and are generalizable in Linux-based environments. Practical implications The rise in transient faults in embedded systems due to the use of low-cost processors has led to the use of fault-tolerant scheduling and mapping techniques. Originality/value This paper fulfills an identified need to have multi-objective task scheduling in a mixed critical system. The timing analysis helps to identify performance risks and assess alternative architectures used to achieve reliability in terms of transient faults.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference48 articles.

1. A fault tolerant voter for approximate triple modular redundancy;Electron,2019

2. Task migration and scheduler for mixed-criticality systems;Sensors,2022

3. Energy-aware scheduling for real-time systems-A survey;ACM Transactions on Embedded Computing Systems,2016

4. Schedulability analysis for a general model of mixed-criticality recurrent real-time tasks,2017

5. An empirical comparison of global, partitioned, and clustered,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3