Improving GPU performance in multimedia applications through FPGA based adaptive DMA controller

Author:

B. Santosh Kumar,E. Krishna Kumar

Abstract

Purpose Deep learning techniques are unavoidable in a variety of domains such as health care, computer vision, cyber-security and so on. These algorithms demand high data transfers but require bottlenecks in achieving the high speed and low latency synchronization while being implemented in the real hardware architectures. Though direct memory access controller (DMAC) has gained a brighter light of research for achieving bulk data transfers, existing direct memory access (DMA) systems continue to face the challenges of achieving high-speed communication. The purpose of this study is to develop an adaptive-configured DMA architecture for bulk data transfer with high throughput and less time-delayed computation. Design/methodology/approach The proposed methodology consists of a heterogeneous computing system integrated with specialized hardware and software. For the hardware, the authors propose an field programmable gate array (FPGA)-based DMAC, which transfers the data to the graphics processing unit (GPU) using PCI-Express. The workload characterization technique is designed using Python software and is implementable for the advanced risk machine Cortex architecture with a suitable communication interface. This module offloads the input streams of data to the FPGA and initiates the FPGA for the control flow of data to the GPU that can achieve efficient processing. Findings This paper presents an evaluation of a configurable workload-based DMA controller for collecting the data from the input devices and concurrently applying it to the GPU architecture, bypassing the hardware and software extraneous copies and bottlenecks via PCI Express. It also investigates the usage of adaptive DMA memory buffer allocation and workload characterization techniques. The proposed DMA architecture is compared with the other existing DMA architectures in which the performance of the proposed DMAC outperforms traditional DMA by achieving 96% throughput and 50% less latency synchronization. Originality/value The proposed gated recurrent unit has produced 95.6% accuracy in characterization of the workloads into heavy, medium and normal. The proposed model has outperformed the other algorithms and proves its strength for workload characterization.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference30 articles.

1. The convergence of sparsified gradient methods,2018

2. FPGA-based minimal latency HEFT scheduler for heterogeneous computing,2021

3. Design of high-speed data transfer direct memory access controller for system on chip based embedded products;Journal of Applied Sciences,2015

4. Demystifying parallel and distributed deep learning: an in-depth concurrency analysis;ACM Computing Surveys,2019

5. Evidence-based static branch prediction using machine learning;Acm Toplas,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3