Bayesian network methodology and machine learning approach: an application on the impact of digital technologies on logistics service quality

Author:

Maleki Vishkaei BehzadORCID,De Giovanni PietroORCID

Abstract

PurposeThis paper aims to use Bayesian network (BN) methodology complemented by machine learning (ML) and what-if analysis to investigate the impact of digital technologies (DT) on logistics service quality (LSQ), employing the service quality (SERVQUAL) framework.Design/methodology/approachUsing a sample of 244 Italian firms, this study estimates the probability distributions associated with both DT and SERVQUAL logistics, as well as their interrelationships. Additionally, BN technique enables the application of ML techniques to uncover hidden relationships, as well as a series of what-if analyses to extract more knowledge.FindingsThe results show that the average probability of firms investing in DT for analytics (DTA) is higher than that of investing inDT for immersive experiences (DTIE). Furthermore, adopting both offers only a moderate likelihood of successfully implementing SERVQUAL logistics. Additionally, certain technologies may not directly influence some SERVQUAL dimensions. The application of ML reveals hidden relationships among technologies, enhancing the predictions of SERVQUAL logistics. Finally, what-if analyses provide further insights to guide decision-making processes aimed at enhancing SERVQUAL logistics dimensions through DTA and DTIE.Originality/valueThis research delves into the influence of DTIE and DTA on SERVQUAL logistics, thereby filling a gap in the existing literature in which no study has explored the intricate relationships between these technologies and SERVQUAL dimensions. Methodologically, we pioneer the integration of BN with ML techniques and what-if analysis, thus exploring innovative techniques to be used in logistics and supply-chain studies.

Publisher

Emerald

Reference42 articles.

1. Digital technology enablers and their implications for supply chain management;Supply Chain Forum: An International Journal,2020

2. Bayesia (2024), “BayesiaLab user manual”, available at: www.bayesia.com/bayesia/bayesialab/user-guide (accessed 10 March 2024).

3. An exploration of logistics-related customer service provision on Twitter: the case of e-retailers;International Journal of Physical Distribution and Logistics Management,2016

4. Using bayesian networks to forecast spares demand from equipment failures in a changing service logistics context;International Journal of Production Economics,2019

5. A short review on minimum description length: an application to dimension reduction in PCA;Entropy,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3