A surrogate-based generic classifier for Chinese TV series reviews

Author:

Ma Yufeng,Xia Long,Shen Wenqi,Zhou Mi,Fan Weiguo

Abstract

Purpose The purpose of this paper is automatic classification of TV series reviews based on generic categories. Design/methodology/approach What the authors mainly applied is using surrogate instead of specific roles or actors’ name in reviews to make reviews more generic. Besides, feature selection techniques and different kinds of classifiers are incorporated. Findings With roles’ and actors’ names replaced by generic tags, the experimental result showed that it can generalize well to agnostic TV series as compared with reviews keeping the original names. Research limitations/implications The model presented in this paper must be built on top of an already existed knowledge base like Baidu Encyclopedia. Such database takes lots of work. Practical implications Like in digital information supply chain, if reviews are part of the information to be transported or exchanged, then the model presented in this paper can help automatically identify individual review according to different requirements and help the information sharing. Originality/value One originality is that the authors proposed the surrogate-based approach to make reviews more generic. Besides, they also built a review data set of hot Chinese TV series, which includes eight generic category labels for each review.

Publisher

Emerald

Subject

Library and Information Sciences,General Computer Science

Reference24 articles.

1. Latent dirichlet allocation;Journal of Machine Learning Research,2003

2. Support-vector networks;Machine Learning,1995

3. Comparative experiments on sentiment classification for online product reviews,2006

4. Mining the peanut gallery: opinion extraction and semantic classification of product reviews,2003

5. Sentiment polarity identification in financial news: a cohesion-based approach,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3