Author:
D.S. Dinesh Kumar,Rao P.V.
Abstract
Purpose
The purpose of this paper is to incorporate a multimodal biometric system, which plays a major role in improving the accuracy and reducing FAR and FRR performance metrics. Biometrics plays a major role in several areas including military applications because of robustness of the system. Speech and face data are considered as key elements that are commonly used for multimodal biometric applications, as they are simultaneously acquired from camera and microphone.
Design/methodology/approach
In this proposed work, Viola‒Jones algorithm is used for face detection, and Local Binary Pattern consists of texture operators that perform thresholding operation to extract the features of face. Mel-frequency cepstral coefficients exploit the performances of voice data, and median filter is used for removing noise. KNN classifier is used for fusion of both face and voice. The proposed method produces better results in noisy environment with better accuracy. In this proposed method, from the database, 120 face and voice samples are trained and tested with simulation results using MATLAB tool that improves performance in better recognition and accuracy.
Findings
The algorithms perform better for both face and voice recognition. The outcome of this work provides better accuracy up to 98 per cent with reduced FAR of 0.5 per cent and FRR of 0.75 per cent.
Originality/value
The algorithms perform better for both face and voice recognition. The outcome of this work provides better accuracy up to 98 per cent with reduced FAR of 0.5 per cent and FRR of 0.75 per cent.
Reference12 articles.
1. Speech signal quality improvement using cuckoo search algorithm;IJEIR,2013
2. Multimodal biometrics by fusion for security using genetic algorithm;Indian Journal of Science and Technology,2017
3. Single image shadow detection and removal based on feature fusion and multiple dictionary learning;Multimedia Tools and Applications,2018
4. Person identification using combined face and speech for the reduction of FAR and FRR,2016
5. Prediction based person recognition using face and speech;International Journal of Engineering & Technology,2018
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献