An active model for ranging by deep convolutional neural network and elephant herding optimization algorithm (DCNN-EHOA) in WSNs

Author:

Rajasekhar Reddy Adireddy,Narayana Rao Appini

Abstract

Purpose In modern technology, the wireless sensor networks (WSNs) are generally most promising solutions for better reliability, object tracking, remote monitoring and more, which is directly related to the sensor nodes. Received signal strength indication (RSSI) is main challenges in sensor networks, which is fully depends on distance measurement. The learning algorithm based traditional models are involved in error correction, distance measurement and improve the accuracy of effectiveness. But, most of the existing models are not able to protect the user’s data from the unknown or malicious data during the signal transmission. The simulation outcomes indicate that proposed methodology may reach more constant and accurate position states of the unknown nodes and the target node in WSNs domain than the existing methods. Design/methodology/approach This paper present a deep convolutional neural network (DCNN) from the adaptation of machine learning to identify the problems on deep ranging sensor networks and overthrow the problems of unknown sensor nodes localization in WSN networks by using instance parameters of elephant herding optimization (EHO) technique and which is used to optimize the localization problem. Findings In this proposed method, the signal propagation properties can be extracted automatically because of this image data and RSSI data values. Rest of this manuscript shows that the ECO can find the better performance analysis of distance estimation accuracy, localized nodes and its transmission range than those traditional algorithms. ECO has been proposed as one of the main tools to promote a transformation from unsustainable development to one of sustainable development. It will reduce the material intensity of goods and services. Originality/value The proposed technique is compared to existing systems to show the proposed method efficiency. The simulation results indicate that this proposed methodology can achieve more constant and accurate position states of the unknown nodes and the target node in WSNs domain than the existing methods.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference36 articles.

1. Neural network based instant parameter prediction for wireless sensor network optimization models;Wireless Networks,2018

2. A highly accurate deep learning based approach for developing wireless sensor network middleware;IEEE Access,2018

3. Robust ANNs-Based WSN localization in the presence of anisotropic signal attenuation;IEEE Wireless Communications Letters,2016

4. State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent network traffic control systems;IEEE Communications Surveys and Tutorials,2017

5. A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms, and open problems;IEEE Communications Surveys and Tutorials,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid multi-objective evolutionary model compression with convolutional neural networks;Results in Engineering;2024-03

2. The Path of Financial Shared Service Model Based on Deep Neural Network Algorithm;2022 International Conference on Knowledge Engineering and Communication Systems (ICKES);2022-12-28

3. Application of Neural Network Algorithm in Translation System Construction;2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3