SARS n-CoV2-19 detection from chest x-ray images using deep neural networks

Author:

Pandit Mohammad Khalid,Banday Shoaib Amin

Abstract

Purpose Novel coronavirus is fast spreading pathogen worldwide and is threatening billions of lives. SARS n-CoV2 is known to affect the lungs of the COVID-19 positive patients. Chest x-rays are the most widely used imaging technique for clinical diagnosis due to fast imaging time and low cost. The purpose of this study is to use deep learning technique for automatic detection of COVID-19 using chest x-rays. Design/methodology/approach The authors used a data set containing confirmed COVID-19 positive, common bacterial pneumonia and healthy cases (no infection). A collection of 1,428 x-ray images is used in this study. The authors used a pre-trained VGG-16 model for the classification task. Transfer learning with fine-tuning was used in this study to effectively train the network on a relatively small chest x-ray data set. Initial experiments show that the model achieves promising results and can be greatly used to expedite COVID-19 detection. Findings The authors achieved an accuracy of 96% and 92.5% in two and three output class cases, respectively. Based on these findings, the medical community can access using x-ray images as possible diagnostic tool for faster COVID-19 detection to complement the already testing and diagnosis methods. Originality/value The proposed method can be used as initial screening which can help health-care professionals to better treat the COVID patients by timely detecting and screening the presence of disease.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference19 articles.

1. Chest pathology detection using deep learning with non-medical training,2015

2. Alzheimer’s disease neuroimaging initiative. Manifold learning of brain MRIs by deep learning,2013

3. Cohen, J.P. (2020), “COVID-19 image data collection”, available at: https://github.com/ieee8023/covid-chestxray-dataset

4. Cohen, J.P., Morrison, P. and Dao, L. (2020), “COVID-19 image data collection, available at: https://github.com/ieee8023/covid-chestxray-dataset

5. Imagenet: a large-scale hierarchical image database,2009

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3