Experimental and numerical analysis of heat transfer in the helically coiled heat exchanger

Author:

Sobota Tomasz

Abstract

Purpose The knowledge of the heat transfer coefficient is important for the proper design of heat exchangers as well as for the determination of the working medium outlet temperatures. This paper aims to present a method of simultaneous determination of coefficients in correlation formulas for the Nusselt number on both sides of the heat transfer surface. Design/methodology/approach The idea of the developed method is based on determining such a values of the coefficients in Nusselt number correlations that fulfill the condition of equality between the measured and calculated temperature at the outlet of heat exchanger in terms of least squares method. To test the proposed method, a special experimental installation was built. The heat transfer in helically coiled tube-in-tube heat exchanger was examined for the wide range of temperature changes and volumetric flow rates of working fluid. Findings The simulation results were validated with an experimental data. The results show that the heat transfer coefficient of the counter-current is higher than the co-current flow in helically coiled heat exchanger. This phenomenon can be beneficial particularly in the laminar flow regime. Research limitations/implications The correlation for the Nusselt number as a function of the Reynolds and Prandtl numbers for hot and cold liquid was obtained with the least squares method for the experimental data. Practical implications The presented method allows for the simultaneous determination of heat transfer coefficient on both sides of the wall without the necessity of indirect calculation of the overall heat transfer coefficient. The presented method can be used in the thermal design of various type heat exchangers. Originality/value This work presents the new methodology of determination correlations for the helically coiled tube-in-tube heat exchanger for co-current and counter-current arrangement, which can be used in thermal design.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3