A Hamiltonian equation produces a variety of Painlevé integrable equations: solutions of distinct physical structures

Author:

Wazwaz Abdul-Majid

Abstract

Purpose The purpose of this paper is to investigate a variety of Painlevé integrable equations derived from a Hamiltonian equation. Design/methodology/approach The newly developed Painlevé integrable equations have been handled by using Hirota’s direct method. The authors obtain multiple soliton solutions and other kinds of solutions for these six models. Findings The developed Hamiltonian models exhibit complete integrability in analogy with the original equation. Research limitations/implications The present study is to address these two main motivations: the study of the integrability features and solitons and other useful solutions for the developed equations. Practical implications The work introduces six Painlevé-integrable equations developed from a Hamiltonian model. Social implications The work presents useful algorithms for constructing new integrable equations and for handling these equations. Originality/value The paper presents an original work with newly developed integrable equations and shows useful findings.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3