Heatlines visualization of convective heat flow during differential heating of porous enclosures with concave/convex side walls

Author:

Biswal Pratibha,Basak Tanmay

Abstract

Purpose This paper is aimed to study natural convection in enclosures with curved (concave and convex) side walls for porous media via the heatline-based heat flow visualization approach. Design/methodology/approach The numerical scheme involving the Galerkin finite element method is used to solve the governing equations for several Prandtl numbers (Prm) and Darcy numbers (Dam) at Rayleigh number, Ram = 106, involving various wall curvatures. Finite element method is advantageous for curved domain, as the biquadratic basis functions can be used for adaptive automated mesh generation. Findings Smooth end-to-end heatlines are seen at the low Dam involving all the cases. At the high Dam, the intense heatline cells are seen for the Cases 1-2 (concave) and Cases 1-3 (convex). Overall, the Case 1 (concave) offers the largest average Nusselt number ( Nur¯) at the low Dam for all Prm. At the high Dam, Nur¯ for the Case 1 (concave) is the largest involving the low Prm, whereas Nur¯ is the largest for Case 1 (convex) involving the high Prm. Practical implications Thermal management for flow systems involving curved surfaces which are encountered in various practical applications may be complicated. The results of the current work may be useful for the material processing, thermal storage and solar heating applications Originality/value The heatline approach accompanied by energy flux vectors is used for the first time for the efficient heat flow visualization during natural convection involving porous media in the curved walled enclosures involving various wall curvatures.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference56 articles.

1. Parametric solution of the Rayleigh-Benard convection model by using the PGD application to nanofluids;International Journal of Numerical Methods for Heat & Fluid Flow,2015

2. Magnetic field effect on soret driving free convection in an inclined porous cavity saturated by a conducting binary mixture;International Journal of Numerical Methods for Heat & Fluid Flow,2014

3. Analysis of convective heat flow visualization within porous right angled triangular enclosures with a concave/convex hypotenuse;Numerical Heat Transfer Part A-Applications,2013

4. Effects of thermal boundary conditions on natural convection flows within a square cavity;International Journal of Heat and Mass Transfer,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3