Predicting firms’ resilience to economic crisis using artificial intelligence for optimizing economic stimulus programs

Author:

Kyriakou Niki,Loukis Euripidis N.,Maragoudakis Manolis

Abstract

Purpose This study aims to develop a methodology for predicting the resilience of individual firms to economic crisis, using historical government data to optimize one of the most important and costly interventions that governments undertake, the huge economic stimulus programs that governments implement for mitigating the consequences of economic crises, by making them more focused on the less resilient and more vulnerable firms to the crisis, which have the highest need for government assistance and support. Design/methodology/approach The authors are leveraging existing firm-level data for economic crisis periods from government agencies having competencies/responsibilities in the domain of economy, such as Ministries of Finance and Statistical Authorities, to construct prediction models of the resilience of individual firms to the economic crisis based on firms’ characteristics (such as human resources, technology, strategies, processes and structure), using artificial intelligence (AI) techniques from the area of machine learning (ML). Findings The methodology has been applied using data from the Greek Ministry of Finance and Statistical Authority about 363 firms for the Greek economic crisis period 2009–2014 and has provided a satisfactory prediction of a measure of the resilience of individual firms to an economic crisis. Research limitations/implications The authors’ study opens up new research directions concerning the exploitation of AI/ML in government for a critical government activity/intervention of high importance that mobilizes/spends huge financial resources. The main limitation is that the abovementioned first application of the proposed methodology has been based on a rather small data set from a single national context (Greece), so it is necessary to proceed to further application of this methodology using larger data sets and different national contexts. Practical implications The proposed methodology enables government agencies responsible for the implementation of such economic stimulus programs to proceed to radical transformations of them by predicting the resilience to economic crisis of the firms applying for government assistance and then directing/focusing the scarce available financial resources to/on the ones predicted to be more vulnerable, increasing substantially the effectiveness of these programs and the economic/social value they generate. Originality/value To the best of the authors’ knowledge, this study is the first application of AI/ML in government that leverages existing data for economic crisis periods to optimize and increase the effectiveness of the largest and most important and costly economic intervention that governments repeatedly have to make: the economic stimulus programs for mitigating the consequences of economic crises.

Publisher

Emerald

Subject

Information Systems and Management,Computer Science Applications,Public Administration

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing public sentiment toward economic stimulus using natural language processing;Transforming Government: People, Process and Policy;2024-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3