Accuracy of a multipath ultrasonic flowmeter with deep learning based on the velocity profile

Author:

Xu Zhijia,Li Minghai

Abstract

Purpose The asymmetry of the velocity profile caused by geometric deformation, complex turbulent motion and other factors must be considered to effectively use the flowmeter on any section. This study aims to better capture the flow field information and establish a model to predict the profile velocity, we take the classical double elbow as the research object and propose to divide the flow field into three categories with certain common characteristics. Design/methodology/approach The deep learning method is used to establish the model of multipath linear velocity fitting profile average velocity. A total of 480 groups of data are taken for training and validation, with ten integer velocity flow fields from 1 m/s to 10 m/s. Finally, accuracy research with relative error as standard is carried out. Findings The numerical experiment yielded the following promising results: the maximum relative error is approximately 1%, and in the majority of cases, the relative error is significantly lower than 1%. These results demonstrate that it surpasses the classical optimization algorithm Equal Tab (5%) and the traditional artificial neural network (3%) in the same scenario. In contrast with the previous research on a fixed profile, we focus on all the velocity profiles of a certain length for the first time, which can expand the application scope of a multipath ultrasonic flowmeter and promote the research on flow measurement in any section. Originality/value This work proposes to divide the flow field of double elbow into three categories with certain common characteristics to better capture the flow field information and establish a model to predict the profile velocity.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference30 articles.

1. Ultrasonic flowmeter,2006

2. A numerical investigation of the flow structures and losses for turbulent flow in 90◦ elbow bends;Process Mechanical Engineering,2009

3. Simulation of 3-D flow around a van-body truck with RNG k-ε turbulence model;Journal of Hydrodynamics, Ser. B,2001

4. Hybrid LES/RANS methods for the simulation of turbulent flows;Progress in Aerospace Sciences,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3