Modeling and influence on effective thermal conductivity of woven fabrics based on structure parameters

Author:

Yang YunchuORCID,Wang HengyuORCID,Yan HangyuORCID,Ni Yunfeng,Li JinyuORCID

Abstract

PurposeThe heat transfer properties play significant roles in the thermal comfort of the clothing products. The purpose of this paper is to find the relationship between heat transfer properties and fabrics' structure, yarn properties and predict the effective thermal conductivity of single layer woven fabrics by a parametric mathematical model.Design/methodology/approachFirst, the weave unit was divided into four types of element regions, including yarn overlap regions, yarn crossing regions, yarn floating regions and pore regions. Second, the number and area proportion of each region were calculated respectively. Some formulas were created to calculate the effective thermal conductivity of each element region based on serial model, parallel model or series–parallel mixing model. Finally, according to the number and area proportion of each region in weave unit, the formulas were established to calculate the fabric overall effective thermal conductivity in thickness direction based on the parallel models.FindingsThe influences of yarn spacing, yarn width, fabric thickness, the compressing coefficients of air layers and weave type on the effective thermal conductivity were further discussed respectively. In this model, the relationships between the effective thermal conductivity and each parameter are some polynomial fitting curves with different orders. Weave type affects the change of effective thermal conductivity mainly through the numbers of different elements and their area ratios.Originality/valueIn this model, the formulas were created respectively to calculate the effective thermal conductivity of each element region and whole weave unit. The serial–parallel mixing characteristics of yarn and surrounding air are considered, as well as the compression coefficients of air layers. The results of this study can be further applied to the optimal design of mixture fabrics with different warp and filling yarn densities or different yarn thermal properties.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Reference17 articles.

1. Modeling of thermal conductivity of stretch knitted fabrics using an optimal neural networks system;Journal of Applied Sciences,2012

2. Statistical models for predicting the thermal resistance of polyester/cotton blended interlock knitted fabrics;International Journal of Thermal Sciences,2014

3. Heat transfer through woven textiles;International Journal of Heat and Mass Transfer,2009

4. A thermally insulating textile inspired by polar bear hair;Advanced Materials,2018

5. Heat transfer through textile fabrics: mathematical model;Applied Mathematical Modelling,1988

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3