Author:
Zhang Hui,Li Xiyang,Kan Za,Zhang Xiaohai,Li Zhiyong
Abstract
Purpose
Reducing production auxiliary time is the key to improve the efficiency of the existing mixed-flow assembly line. This paper proposes a method combining improved genetic algorithm (GA) and Flexsim software. It also investigates mixed-flow assembly line scheduling and just-in-time (JIT) parts feeding scheme to reduce waste in production while taking the existing hill-drop mixed-flow assembly line as an example to verify the effectiveness of the method.
Design/methodology/approach
In this research, a method is presented to optimize the efficiency of the present assembly line. The multi-objective mathematical model is established based on the objective function of the minimum production cycle and part consumption balance, and the solution model is developed using multi-objective GA to obtain the mixed flow scheduling scheme of the hill-drop planter. Furthermore, modeling and simulation with Flexsim software are investigated along with the contents of line inventory, parts transportation means, daily feeding times and time points.
Findings
Theoretical analysis and simulation experiments are carried out in this paper while taking an example of a hill-drop planter mixed-flow assembly line. The results indicate that the method can effectively reduce the idle and overload of the assembly line, use the transportation resources rationally and decrease the accumulation of the line inventory.
Originality/value
The method of combining improved GA and Flexsim software was used here for the first time intuitively and efficiently to study the balance of existing production lines and JIT feeding of parts. Investigating the production scheduling scheme provides a reference for the enterprise production line accompanied by the quantity allocation of transportation tools, the inventory consumption of the spare parts along the line and the utilization rate of each station to reduce the auxiliary time and apply practically.
Subject
Industrial and Manufacturing Engineering,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献